X. Frank Yang School of Medicine, Microbiology & Immunology

Empty picture place holder

X. Frank Yang


Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.

Involvement of p300 in constitutive and HIV-1 Tat-activated expression of glial fibrillary acidic protein in astrocytes

Wei Zou; Zhenyuan Wang; Ying Liu; Yan Fan; Betty Y. Zhou; X. Frank Yang; Johnny J. He

(Profiled Author: X. Frank Yang)

GLIA. 2010;58(13):1640-1648.


HIV-1 Tat protein is an important pathogenic factor in HIV-1-associated neurological diseases. One hallmark of HIV-1 infection of the central nervous system (CNS) is astrocytosis, which is characterized by elevated glial fibrillary acidic protein (GFAP) expression in astrocytes. We have shown that Tat activates GFAP expression in astrocytes [Zhou et al., (2004) Mol Cell Neurosci 27:296-305] and that GFAP is an important regulator of Tat neurotoxicity [Zou et al., (2007) Am J Pathol 171:1293-1935]. However, the underlying mechanisms for Tat-mediated GFAP up-regulation are not understood. In this study, we reported concurrent upregulation of adenovirus E1a-associated 300 kDa protein p300 and GFAP in Tat-expressing human astroytoma cells and primary astrocytes. We showed that p300 was indeed induced by Tat expression and HIV-1 infection and that the induction occurred at the transcriptional level through the cis-acting elements of early growth response 1 (egr-1) within its promoter. Using siRNA, we further showed that p300 regulated both constitutive and Tat-mediated GFAP expression. Moreover, we showed that ectopic expression of p300 potentiated Tat transactivation activity and increased proliferation of HIV-1-infected astrocytes, but had little effect on HIV-1 replication in these cells. Taken together, these results demonstrate for the first time that Tat is a positive regulator of p300 expression, which in turn regulates GFAP expression, and suggest that the Tat-Egr-1-p300-GFAP axis likely contributes to Tat neurotoxicity and predisposes astrocytes to be an HIV-1 sanctuary in the CNS. © 2010 Wiley-Liss, Inc.

PMID: 20578042     PMCID: PMC2919602    

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document