Lang Li School of Medicine, Medical & Molecular Genetics

Empty picture place holder

Lang Li

Email

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.


A novel global search algorithm for nonlinear mixed-effects models using particle swarm optimization

Seongho Kim; Lang Li

(Profiled Author: Lang Li)

Journal of Pharmacokinetics and Pharmacodynamics. 2011;38(4):471-495.

Abstract

NONMEM is one of the most popular approaches to a population pharmacokinetics/pharmacodynamics (PK/PD) analysis in fitting nonlinear mixed-effects models. As a local optimization algorithm, NONMEM usually requires an initial value close enough to the global optimum. This paper proposes a novel global search algorithm called P-NONMEM. It combines the global search strategy by particle swarm optimization (PSO) and the local estimation strategy of NONMEM. In the proposed algorithm, initial values (particles) are generated randomly by PSO, and NONMEM is implemented for each particle to find a local optimum for fixed effects and variance parameters. P-NONMEM guarantees the global optimization for fixed effects and variance parameters. Under certain regularity conditions, it also leads to global optimization for random effects. Because P-NONMEM doesn't run PSO search for random effect estimation, it avoids tremendous computational burden. In the simulation studies, we have shown that P-NONMEM has much improved convergence performance than NONMEM. Even when the initial values were far away from the global optima, P-NONMEM converged nicely for all fixed effects, random effects, and variance components. © Springer Science+Business Media, LLC 2011.


PMID: 21717235    

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document