Dental Surgical Specialties

Explore the Fingerprint Trends

Explore the Research Network

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.

A dysfunctional tricarboxylic acid cycle enhances fitness of Staphylococcus epidermidis during β-lactam stress

Vinai Chittezham Thomas; Lauren C. Kinkead; Ashley Janssen; Carolyn R. Schaeffer; Keith M. Woods; Jill K. Lindgren; Jonathan M. Peaster; Sujata S. Chaudhari; Marat Sadykov; Joselyn Jones; et al.

(Profiled Authors: Matthew C Zimmerman; Kenneth W Bayles; Paul D Fey; Greg A Somerville)

mBio. 2013;4(4).


A recent controversial hypothesis suggested that the bactericidal action of antibiotics is due to the generation of endogenous reactive oxygen species (ROS), a process requiring the citric acid cycle (tricarboxylic acid [TCA] cycle). To test this hypothesis, we assessed the ability of oxacillin to induce ROS production and cell death in Staphylococcus epidermidis strain 1457 and an isogenic citric acid cycle mutant. Our results confirm a contributory role for TCA-dependent ROS in enhancing susceptibility of S. epidermidis toward β-lactam antibiotics and also revealed a propensity for clinical isolates to accumulate TCA cycle dysfunctions presumably as a way to tolerate these antibiotics. The increased protection from β-lactam antibiotics could result from pleiotropic effects of a dysfunctional TCA cycle, including increased resistance to oxidative stress, reduced susceptibility to autolysis, and a more positively charged cell surface. IMPORTANCE Staphylococcus epidermidis, a normal inhabitant of the human skin microflora, is the most common cause of indwelling medical device infections. In the present study, we analyzed 126 clinical S. epidermidis isolates and discovered that tricarboxylic acid (TCA) cycle dysfunctions are relatively common in the clinical environment. We determined that a dysfunctional TCA cycle enables S. epidermidis to resist oxidative stress and alter its cell surface properties, making it less susceptible to β-lactam antibiotics. © 2013 Chittezham Thomas et al.

PMID: 23963176     PMCID: PMC3747581    

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document