Manage your Funding Opportunities

Antonio Baptista Institute of Environmental Health

Empty picture place holder

Antonio Baptista


Manage your Funding

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.

Nutrient Loading and Transformations in the Columbia River Estuary Determined by High-Resolution In Situ Sensors

Melissa Gilbert; Joseph Needoba; Corey Koch; Andrew Barnard; Antonio Baptista

(Profiled Authors: Antonio Baptista; Joseph Needoba)

Estuaries and Coasts. 2013;36(4):708-727.


The Columbia River estuary is characterized by relatively large tidal currents and water residence times of a few days or less. These and other environmental conditions tend to suppress water column productivity and favor the export of riverborne nutrients to the coastal ocean. However, hotspots of biological activity may allow for significant nutrient transformation and removal within the estuary, but these processes have previously been difficult to quantify due to the challenges of obtaining measurements at appropriate frequency and duration. In this study, nutrient biogeochemical dynamics within the salt-influenced region of the estuary were quantified using high-resolution in situ observations of nutrients and physical water properties. During 2010, three autonomous nutrient sensors (Satlantic SUNA, SubChem Systems Inc. APNA, WET Labs Cycle-PO4) that together measured nitrate + nitrite, orthophosphate, ammonium, silicic acid, and nitrite were deployed on fixed observatory platforms. Hourly measurements captured tidal fluctuations and permitted an analysis of river and ocean end-member mixing. The results suggested that during summer, the lower estuary released high concentrations of ammonium and phosphate despite low concentrations in the river and coastal ocean. This was likely a result of organic matter accumulation and remineralization in the estuarine turbidity maximum and the lateral bays adjacent to the main channel. © 2013 Coastal and Estuarine Research Federation.

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document