Manage your Funding Opportunities
  

Bradley Tebo Institute of Environmental Health

Empty picture place holder

Bradley Tebo

Email

Manage your Funding

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.


Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling

Zimeng Wang; Sung-Woo Lee; Jeffrey G. Catalano; Juan S. Lezama-Pacheco; John R. Bargar; Bradley M. Tebo; Daniel E. Giammar

(Profiled Author: Bradley Tebo)

Environmental Science and Technology. 2013;47(2):850-858.

Abstract

The mobility of hexavalent uranium in soil and groundwater is strongly governed by adsorption to mineral surfaces. As strong naturally occurring adsorbents, manganese oxides may significantly influence the fate and transport of uranium. Models for U(VI) adsorption over a broad range of chemical conditions can improve predictive capabilities for uranium transport in the subsurface. This study integrated batch experiments of U(VI) adsorption to synthetic and biogenic MnO2, surface complexation modeling, ζ-potential analysis, and molecular-scale characterization of adsorbed U(VI) with extended X-ray absorption fine structure (EXAFS) spectroscopy. The surface complexation model included inner-sphere monodentate and bidentate surface complexes and a ternary uranyl-carbonato surface complex, which was consistent with the EXAFS analysis. The model could successfully simulate adsorption results over a broad range of pH and dissolved inorganic carbon concentrations. U(VI) adsorption to synthetic δ-MnO2 appears to be stronger than to biogenic MnO2, and the differences in adsorption affinity and capacity are not associated with any substantial difference in U(VI) coordination. © 2012 American Chemical Society.


PMID: 23227949    

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document