Manage your Funding Opportunities

James Whittaker Institute of Environmental Health

Empty picture place holder

James Whittaker


Manage your Funding

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.

Radiation inactivation of galactose oxidase, a monomeric enzyme with a stable free radical

Ellis S. Kempner; James W. Whittaker; Jay H. Miller

(Profiled Author: James Whittaker)

Protein Science. 2010;19(2):236-241.


To determine the radiation sensitivity of galactose oxidase, a 68 kDa monomeric enzyme containing a mononuclear copper ion coordinated with an unusually stable cysteinyl-tyrosine (Cys-Tyr) protein free radical. Both active enzyme and reversibly rendered inactive enzyme were irradiated in the frozen state with high-energy electrons. Surviving polypeptides and surviving enzyme activity were analyzed by radiation target theory giving the radiation sensitive mass for each property. In both active and inactive forms, protein monomer integrity was lost with a single radiation interaction anywhere in the polypeptide, but enzymatic activity was more resistant, yielding target sizes considerably smaller than that of the monomer. These results suggest that the structure of galactose oxidase must make its catalytic activity unusually robust, permitting the enzymatic properties to survive in molecules following cleavage of the polymer chain. Radiation target size for loss of monomers yielded the mass of monomers indicating a polypeptide chain cleavage after a radiation interaction anywhere in the monomer. Loss of enzymatic activity yielded a much smaller mass indicating a robust structure in which catalytic activity could be expressed in cleaved polypeptides. © 2009 The Protein Society.

PMID: 19998406     PMCID: PMC2865722    

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document