Manage your Funding Opportunities
  

Michiko Nakano School of Medicine, Institute of Environmental Health

Empty picture place holder

Michiko Nakano

Email

Manage your Funding

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.


Promoter recognition by a complex of Spx and the C-terminal domain of the RNA polymerase α subunit

Michiko M. Nakano; Ann Lin; Cole S. Zuber; Kate J. Newberry; Richard G. Brennan; Peter Zuber

(Profiled Authors: Michiko Nakano; Peter Zuber)

PLoS ONE. 2010;5(1).

Abstract

Background: Spx, an ArsC (arsenate reductase) family member, is a global transcriptional regulator of the microbial stress response and is highly conserved amongst Gram-positive bacteria. Bacillus subtilis Spx protein exerts positive and negative control of transcription through its interaction with the C-terminal domain of the RNA polymerase (RNAP) α subunit (αCTD). Spx activates trxA (thioredoxin) and trxB (thioredoxin reductase) in response to thiol stress, and bears an N-terminal C10XXC13 redox disulfide center that is oxidized in active Spx. Methodology/Principal Findings: The structure of mutant SpxC10S showed a change in the conformation of helix α4. Amino acid substitutions R60E and K62E within and adjacent to helix α4 conferred defects in Spx-activated transcription but not Spx-dependent repression. Electrophoretic mobility-shift assays showed αCTD interaction with trxB promoter DNA, but addition of Spx generated a supershifted complex that was disrupted in the presence of reductant (DTT). Interaction of αCTD/Spx complex with promoter DNA required the cis-acting elements -45AGCA-42 and -34AGCG-31 of the trxB promoter. The SpxG52R mutant, defective in αCTD binding, did not interact with the αCTD-trxB complex. Spx R60E not only failed to complex with aCTD-trxB, but also disrupted αCTD-trxB DNA interaction. Conclusions/Significance: The results show that Spx and αCTD form a complex that recognizes the promoter DNA of an Spx-controlled gene. A conformational change during oxidation of Spx to the disulfide form likely alters the structure of Spx α helix α4, which contains residues that function in transcriptional activation and αCTD/Spx-promoter interaction. The results suggest that one of these residues, R60 of the α4 region of oxidized Spx, functions in αCTD/Spx-promoter contact but not in αCTD interaction. © 2010 Nakano et al.


PMID: 20084284     PMCID: PMC2801614    

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document