Manage your Funding Opportunities
  

Michiko Nakano School of Medicine, Institute of Environmental Health

Empty picture place holder

Michiko Nakano

Email

Manage your Funding

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.


Nitric oxide dioxygenation reaction in devS and the initial response to nitric oxide in mycobacterium tuberculosis

Erik T. Yukl; Alexandra Ioanoviciu; Santhosh Sivaramakrishnan; Michiko M. Nakano; Paul R. Ortiz De Montellano; Pierre Moënne-Loccoz

(Profiled Authors: Pierre Moenne-Loccoz; Michiko Nakano)

Biochemistry. 2011;50(6):1023-1028.

Abstract

DevS and DosT from Mycobacterium tuberculosis (MTB) are paralogous heme-based sensor kinases that respond to hypoxia and to low concentrations of nitric oxide (NO). Both proteins work with the response regulator DevR as a two-component regulatory system to induce the dormancy regulon in MTB. While DevS and DosT are inactive when dioxygen is bound to the heme Fe(II) at their sensor domain, autokinase activity is observed in their heme Fe(II)-NO counterparts. To date, the conversion between active and inactive states and the reactivity of the heme-oxy complex toward NO have not been investigated. Here, we use stopped-flow UV-vis spectroscopy and rapid freeze quench resonance Raman spectroscopy to probe these reactions in DevS. Our data reveal that the heme-O2 complex of DevS reacts efficiently with NO to produce nitrate and the oxidized Fe(III) heme through an NO dioxygenation reaction that parallels the catalytic reactions of bacterial flavohemoglobin and truncated hemoglobins. Autophosphorylation activity assays show that the Fe(III) heme state of DevS remains inactive but exhibits a high affinity for NO and forms an Fe(III)-NO complex that is readily reduced by ascorbate, a mild reducing agent. On the basis of these results, we conclude that upon exposure to low NO concentrations, the inactive oxy-heme complex of DevS is rapidly converted to the Fe(II)-NO complex in the reducing environment of living cells and triggers the initiation of dormancy. © 2010 American Chemical Society.


PMID: 21250657     PMCID: PMC3079480    

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document