Manage your Funding Opportunities
  

Ninian Blackburn Institute of Environmental Health

Empty picture place holder

Ninian Blackburn

Office phone

(503) 494-9439

Email

Manage your Funding

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.


The lumenal loop Met 672-Pro 707 of copper-transporting ATPase ATP7A binds metals and facilitates copper release from the intramembrane sites

Amanda N. Barry; Adenike Otoikhian; Sujata Bhatt; Ujwal Shinde; Ruslan Tsivkovskii; Ninian J. Blackburn; Svetlana Lutsenko

(Profiled Authors: Ninian Blackburn; Ujwal Shinde)

Journal of Biological Chemistry. 2011;286(30):26585-26594.

Abstract

The copper-transporting ATPase ATP7A has an essential role in human physiology. ATP7A transfers the copper cofactor to metalloenzymes within the secretory pathway; inactivation of ATP7A results in an untreatable neurodegenerative disorder, Menkes disease. Presently, the mechanism of ATP7A-mediated copper release into the secretory pathway is not understood. We demonstrate that the characteristic His/Met-rich segment Met 672- Pro 707 (HM-loop) that connects the first two transmembrane segments of ATP7A is important for copper release. Mutations within this loop do not prevent the ability of ATP7A to form a phosphorylated intermediate during ATP hydrolysis but inhibit subsequent dephosphorylation, a step associated with copper release. The HM-loop inserted into a scaffold protein forms two structurally distinct binding sites and coordinates copper in a mixed His-Met environment with an ∼2:1 stoichiometry. Binding of either copper or silver, a Cu(I) analog, induces structural changes in the loop. Mutations of 4 Met residues to Ile or two His-His pairs to Ala-Gly decrease affinity for copper. Altogether, the data suggest a two-step process, where copper released from the transport sites binds to the first His-(Met)2 site, triggering a structural change and binding to a second 2-coordinate His-His or His-Met site. We also show that copper binding within the HM-loop stabilizes Cu(I) and protects it from oxidation, which may further aid the transfer of copper from ATP7A to acceptor proteins. The mechanism of copper entry into the secretory pathway is discussed. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.


PMID: 21646353     PMCID: PMC3143623    

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document