Manage your Funding Opportunities

Ninian Blackburn Institute of Environmental Health

Empty picture place holder

Ninian Blackburn


Manage your Funding

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.

Stable Cu(II) and Cu(I) mononuclear intermediates in the assembly of the CuA center of thermus thermophilus cytochrome oxidase

Kelly N. Chacón; Ninian J. Blackburn

(Profiled Author: Ninian Blackburn)

Journal of the American Chemical Society. 2012;134(39):16401-16412.


CuA is a dinuclear mixed-valence center located in subunit 2 of the ba 3-type cytochrome oxidase from Thermus thermophilus. The assembly of this site within the periplasmic membrane is believed to be mediated by the copper chaperones Sco and/or PCuAC, but the biological mechanisms are still poorly understood, thereby stimulating interest in the mechanisms of CuA formation from inorganic ions. The formulation of the CuA center as an electron-delocalized Cu1.5-Cu1.5 system implicates both Cu(II) and Cu(I) states in the metalation process. In earlier work we showed that selenomethionine (SeM) substitution of the coordinated M160 residue provided a ligand-directed probe for studying the copper coordination environment via the Se XAS signal, which was particularly useful for interrogating the Cu(I) states where other spectroscopic probes are absent. In the present study we have investigated the formation of mixed-valence CuA and its M160SeM derivative by stopped-flow UV-vis, EPR, and XAS at both Cu and Se edges, while the formation of fully reduced di-Cu(I) CuA has been studied by XAS alone. Our results establish the presence of previously undetected mononuclear intermediates and show important differences from the metalation reactions of purple CuA azurin. XAS spectroscopy at Cu and Se edges has allowed us to extend mechanistic inferences to formation of the di-Cu(I) state which may be more relevant to biological CuA assembly. In particular, we find that T. thermophilus CuA assembles more rapidly than reported for other CuA systems and that the dominant intermediate along the pathway to mixed-valence is a new green species with λmax = 460 nm. This intermediate has been isolated in a homogeneous state and shown to be a mononuclear Cu(II)-(His)(Cys)2 species with no observable Cu(II)-(Met) interaction. Reduction with dithionite generates its Cu(I) homologue which is again mononuclear but now shows a strong interaction with the Met160 thioether. The results are discussed within the framework of the "coupled distortion" model for Cu(II) thiolates and their relevance to biological metalation reactions of the CuA center. © 2012 American Chemical Society.

PMID: 22946616     PMCID: PMC3616644    

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document