Manage your Funding Opportunities
  

Ninian Blackburn Institute of Environmental Health

Empty picture place holder

Ninian Blackburn

Email

Manage your Funding

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.


Metal Export by CusCFBA, the Periplasmic Cu(I)/Ag(I) Transport System of Escherichia coli

Tiffany D. Mealman; Ninian J. Blackburn; Megan M. McEvoy

(Profiled Author: Ninian Blackburn)

Current Topics in Membranes. 2012;69:163-196.

Abstract

High levels of metal ions have the potential to cause cellular toxicity through a variety of mechanisms; therefore, cells have developed numerous systems that regulate their intracellular concentrations. The Cus resistance system aids in protection of Escherichia coli from high levels of Cu(I) and Ag(I) by actively transporting these metal ions to the extracellular environment. The Cus system forms a continuous complex, CusCBA, that spans the inner membrane, periplasm, and outer membrane of Gram-negative bacteria, together with a novel fourth component, the periplasmic metallochaperone, CusF. The metal-binding sites of CusA, CusB, and CusF are exquisitely tuned for Cu(I) and Ag(I), and thus effectively discriminate these ions for transport from other metals that may be required in the cell. Furthermore, direct transfer of metal from protein to protein within the Cus system during the transport process is likely to reduce the potential toxicity posed by the free metal ions. Here we review the wealth of structural, biochemical, and genetic information on the Cus system, which demonstrates the many intriguing aspects of function for metal-transporting efflux systems. © 2012 Elsevier Inc.


PMID: 23046651    

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document