Manage your Funding Opportunities
  

Paul Tratnyek Institute of Environmental Health

Empty picture place holder

Paul Tratnyek

Research Interest Keywords

contaminants, degradation, kinetics, mechanisms, redox, reduction, oxidation, dechlorination, water, treatment, purification, disinfection

Email

Manage your Funding

Link

http://www.ebs.ogi.edu/tratnyek/

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.


Reactivity of Fe/FeS nanoparticles: Electrolyte composition effects on corrosion electrochemistry

David Turcio-Ortega; Dimin Fan; Paul G. Tratnyek; Eun-Ju Kim; Yoon-Seok Chang

(Profiled Author: Paul Tratnyek)

Environmental Science and Technology. 2012;46(22):12484-12492.

Abstract

Zerovalent iron nanoparticles (Fe0 NPs or nZVI) synthesized by reductive precipitation in aqueous solution (Fe/FeO) differ in composition and reactivity from the NPs obtained by reductive precipitation in the presence of a S-source such as dithionite (Fe/FeS). To compare the redox properties of these types of NPs under a range of environmentally relevant solution conditions, stationary powder disk electrodes (PDEs) made from Fe/FeO and Fe/FeS were characterized using a series of complementary electrochemical techniques: open-circuit chronopotentiometry (CP), linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). The passive films on these materials equilibrate within minutes of first immersion and do not show further breakdown until >1 day of exposure. During this period, the potentials and currents measured by LPR and LSV suggest that Fe/FeS undergoes more rapid corrosion and is more strongly influence by solution chemical conditions than Fe/FeO. Chloride containing media were strongly activating and natural organic matter (NOM) was mildly passivating for both materials. These effects were also seen in the impedance data obtained by EIS, and equivalent circuit modeling of the electrodes composed of these powders suggested that the higher reactivity of Fe/FeS is due to greater abundance of defects in its passive film. © 2012 American Chemical Society.


PMID: 23078203    

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document