Manage your Funding Opportunities

Pierre Moenne-Loccoz Institute of Environmental Health

Empty picture place holder

Pierre Moenne-Loccoz


Manage your Funding

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.

Proximal ligand electron donation and reactivity of the cytochrome P450 ferric-peroxo anion

Santhosh Sivaramakrishnan; Hugues Ouellet; Hirotoshi Matsumura; Shenheng Guan; Pierre Moënne-Loccoz; Alma L. Burlingame; Paul R. Ortiz De Montellano

(Profiled Author: Pierre Moenne-Loccoz)

Journal of the American Chemical Society. 2012;134(15):6673-6684.


CYP125 from Mycobacterium tuberculosis catalyzes sequential oxidation of the cholesterol side-chain terminal methyl group to the alcohol, aldehyde, and finally acid. Here, we demonstrate that CYP125 simultaneously catalyzes the formation of five other products, all of which result from deformylation of the sterol side chain. The aldehyde intermediate is shown to be the precursor of both the conventional acid metabolite and the five deformylation products. The acid arises by protonation of the ferric-peroxo anion species and formation of the ferryl-oxene species, also known as Compound I, followed by hydrogen abstraction and oxygen transfer. The deformylation products arise by addition of the same ferric-peroxo anion to the aldehyde intermediate to give a peroxyhemiacetal that leads to C-C bond cleavage. This bifurcation of the catalytic sequence has allowed us to examine the effect of electron donation by the proximal ligand on the properties of the ferric-peroxo anion. Replacement of the cysteine thiolate iron ligand by a selenocysteine results in UV-vis, EPR, and resonance Raman spectral changes indicative of an increased electron donation from the proximal selenolate ligand to the iron. Analysis of the product distribution in the reaction of the selenocysteine substituted enzyme reveals a gain in the formation of the acid (Compound I pathway) at the expense of deformylation products. These observations are consistent with an increase in the pK a of the ferric-peroxo anion, which favors its protonation and, therefore, Compound I formation. © 2012 American Chemical Society.

PMID: 22444582     PMCID: PMC3329582    

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document