• Home
  •  > Scopus Publication Detail

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.


Hazard assessment of United Arab Emirates (UAE) incense smoke

Rebecca Cohen; Kenneth G. Sexton; Karin B. Yeatts

(Profiled Authors: Karin B Yeatts; Kenneth G Sexton)

Science of the Total Environment. 2013;458-460:176-186.

Abstract

Incense burning inside the home, a common practice in Arabian Gulf countries, has been recognized as a potentially modifiable source of indoor air pollution. To better understand potential adverse effects of incense burning in exposed individuals, we conducted a hazard assessment of incense smoke exposure. The goals of this study were first to characterize the particles and gases emitted from Arabian incense over time when burned, and secondly to examine in vitro human lung cells responses to incense smoke. Two types of incense (from the United Arab Emirates) were burned in a specially designed indoor environmental chamber (22m3) to simulate the smoke concentration in a typical living room and the chamber air was analyzed. Both particulate (PM) concentrations and sizes were measured, as were gases carbon monoxide (CO), sulfur dioxide (SO2), oxides of nitrogen (NOx), formaldehyde (HCHO), and carbonyls. During the burn, peak concentrations were recorded for PM (1.42mg/m3), CO (122pm), NOx (0.3ppm), and HCHO (85ppb) along with pentanal (71.9μg/m3), glyoxal (84.8μg/m3), and several other carbonyls. Particle sizes ranged from 20 to 300nm with count median diameters ranging from 65 to 92nm depending on time post burn-out. PM, CO, and NOx time-weighted averages exceeded current government regulation values and emissions seen previously from environmental tobacco smoke. Charcoal emissions were the main contributor to both the high CO and NOx concentrations. A significant cell inflammatory response was observed in response to smoke components formed from incense burning. Our hazard evaluation suggests that incense burning contributes to indoor air pollution and could be harmful to human health. © 2013 Elsevier B.V.


PMID: 23648447    

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document