• Home
  •  > Scopus Publication Detail

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.


Chromatin remodelers fine-tune h3k36me-directed deacetylation of neighbor nucleosomes by Rpd3S

Chul-Hwan Lee; Jun Wu; Bing Li

(Profiled Author: Bing Li)

Molecular Cell. 2013;52(2):255-263.

Abstract

Chromatin remodelers have been implicated in the regulation of histone-modifying complexes. However, the underlying mechanism remains poorly understood. The Rpd3S histone deacetylase complex is recruited by elongating RNA polymerase II to remove histone acetylation at coding regions in a manner that is dependent on methylation of lysine 36 on histone 3 (H3K36me), and Rpd3S prefers dinucleosomes. Here, we show that the binding of Rpd3S to dinucleosomes and its catalytic activity are sensitive to the length of nucleosomal linker in a nonlinear fashion. Intriguingly, we found that H3K36me on one nucleosome stimulates Rpd3S to deacetylate the neighboring nucleosomes when those two nucleosomes are within an optimal distance. Finally, we demonstrate that chromatin remodelers enhance Rpd3S activity by altering nucleosomal spacing, suggesting that chromatin remodelers prime chromatin configuration to fine-tune subsequent histone modification reactions. This mechanism is important for accurate temporal control of chromatin dynamics during the transcription elongation cycle. © 2013 Elsevier Inc.


PMID: 24055344     PMCID: PMC3825818    

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document