• Home
  •  > Scopus Publication Detail

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.


A network of heterochronic genes including Imp1 regulates temporal changes in stem cell properties

Jinsuke Nishino; Sunjung Kim; Yuan Zhu; Hao Zhu; Sean J. Morrison

(Profiled Authors: Sean J Morrison; Hao Zhu)

eLife. 2013;2013(2).

Abstract

Stem cell properties change over time to match the changing growth and regeneration demands of tissues. We showed previously that adult forebrain stem cell function declines during aging because of increased expression of let-7 microRNAs, evolutionarily conserved heterochronic genes that reduce HMGA2 expression. Here we asked whether let-7 targets also regulate changes between fetal and adult stem cells. We found a second let-7 target, the RNA binding protein IMP1, that is expressed by fetal, but not adult, neural stem cells. IMP1 expression was promoted by Wnt signaling and Lin28a expression and opposed by let-7 microRNAs. Imp1-deficient neural stem cells were prematurely depleted in the dorsal telencephalon due to accelerated differentiation, impairing pallial expansion. IMP1 post-transcriptionally inhibited the expression of differentiation-associated genes while promoting the expression of self-renewal genes, including Hmga2. A network of heterochronic gene products including Lin28a, let-7, IMP1, and HMGA2 thus regulates temporal changes in stem cell properties. © Nishino et al.

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document