• Home
  •  > Scopus Publication Detail

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.

XPhosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains

Ilmin Kwon; Masato Kato; Siheng Xiang; Leeju Wu; Pano Theodoropoulos; Hamid Mirzaei; Tina Han; Shanhai Xie; Jeffry L. Corden; Steven L. McKnight

(Profiled Authors: Masato Kato; Steven L McKnight; Hamid Mirzaei)

Cell. 2013;155(5):X1049-1060.


The low-complexity (LC) domains of the products of the fused in sarcoma (FUS), Ewings sarcoma (EWS), and TAF15 genes are translocated onto a variety of different DNA-binding domains and thereby assist in driving the formation of cancerous cells. In the context of the translocated fusion proteins, these LC sequences function as transcriptional activation domains. Here, we show that polymeric fibers formed from these LC domains directly bind the C-terminal domain (CTD) of RNA polymerase II in a manner reversible by phosphorylation of the iterated, heptad repeats of the CTD. Mutational analysis indicates that the degree of binding between the CTD and the LC domain polymers correlates with the strength of transcriptional activation. These studies offer a simple means of conceptualizing how RNA polymerase II is recruited to active genes in its unphosphorylated state and released for elongation following phosphorylation of the CTD. PaperFlick © 2013 Elsevier Inc.

PMID: 24267890     PMCID: PMC4010232    

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document