• Home
  •  > Scopus Publication Detail

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.

Preclinical therapeutic efficacy of a novel pharmacologic inducer of apoptosis in malignant peripheral nerve sheath tumors

Vincent Chau; S. Kyun Lim; Wei Mo; Chiachi Liu; Amish J. Patel; Renée M. McKay; Shuguang Wei; Bruce A. Posner; Jef K. De Brabander; Noelle S. Williams; et al.

(Profiled Authors: Jef K De Brabander; Lu Q Le; Sang kyun Lim; Renee M McKay; Luis F Parada; Bruce A Posner; Noelle S Williams)

Cancer Research. 2014;74(2):586-597.


Neurofibromatosis type I (NF1) is an autosomal disorder that affects neural crest-derived tissues, leading to a wide spectrum of clinical presentations. Patients commonly present with plexiform neurofibromas, benign but debilitating growths that can transform into malignant peripheral nerve sheath tumors (MPNST), a main cause of mortality. Currently, surgery is the primary course of treatment for MPNST, but with the limitation that these tumors are highly invasive. Radiotherapy is another treatment option, but is undesirable because it can induce additional mutations. Patients with MPNST may also receive doxorubicin as therapy, but this DNA-intercalating agent has relatively low tumor specificity and limited efficacy. In this study, we exploited a robust genetically engineered mouse model of MPNST that recapitulates human NF1-associated MPNST to identify a novel small chemical compound that inhibits tumor cell growth. Compound 21 (Cpd21) inhibits growth of all available in vitro models of MPNST and human MPNST cell lines, while remaining nontoxic to normally dividing Schwann cells or mouse embryonic fibroblasts. We show that this compound delays the cell cycle and leads to cellular apoptosis. Moreover, Cpd21 can reduce MPNST burden in a mouse allograft model, underscoring the compound's potential as a novel chemotherapeutic agent. © 2013 American Association for Cancer Research.

PMID: 24285727     PMCID: PMC3947005    

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document