• Home
  •  > Scopus Publication Detail

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.


Analysis of Fmr1 deletion in a subpopulation of post-mitotic neurons in mouse cortex and hippocampus

Anahita Amiri; Efrain Sanchez-Ortiz; Woosung Cho; Shari G. Birnbaum; Jing Xu; Renée M. Mckay; Luis F. Parada

(Profiled Authors: Shari G Birnbaum; Renee M McKay; Luis F Parada)

Autism Research. 2014;7(1):60-71.

Abstract

Fragile X syndrome (FXS) is the most common form of inherited mental retardation and the leading cause of autism. FXS is caused by mutation in a single gene, FMR1, which encodes an RNA-binding protein FMRP. FMRP is highly expressed in neurons and is hypothesized to have a role in synaptic structure, function, and plasticity by regulating mRNAs that encode pre- and post-synaptic proteins. Fmr1 knockout (KO) mice have been used as a model to study FXS. These mice have been reported to show a great degree of phenotypic variability based on the genetic background, environmental signals, and experimental methods. In this study, we sought to restrict FMRP deletion to two brain regions that have been implicated in FXS and autism. We show that ablating Fmr1 in differentiated neurons of hippocampus and cortex results in dendritic alterations and changes in synaptic marker intensity that are brain region specific. In our conditional mutant mice, FMRP-deleted neurons have activated AKT-mTOR pathway signaling in hippocampus but display no apparent behavioral phenotypes. These results highlight the importance of identifying additional factors that interact with Fmr1 to develop FXS. Autism Res 2014, 7: 60-71. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.


PMID: 24408886    

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document