• Home
  •  > Scopus Publication Detail

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.


A novel radiotracer to image glycogen metabolism in tumors by positron emission tomography

Timothy H. Witney; Laurence Carroll; Israt S. Alam; Anil Chandrashekran; Quang De Nguyen; Roberta Sala; Robert Harris; Ralph J. De Berardinis; Roshan Agarwal; Eric O. Aboagye

(Profiled Author: Ralph J DeBerardinis)

Cancer Research. 2014;74(5):1319-1328.

Abstract

The high rate of glucose uptake to fuel the bioenergetic and anabolic demands of proliferating cancer cells is well recognized and is exploited with 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG- PET) to image tumors clinically. In contrast, enhanced glucose storage as glycogen (glycogenesis) in cancer is less well understood and the availability of a noninvasive method to image glycogen in vivo could provide important biologic insights. Here, we demonstrate that 18F-N-(methyl-(2-fluoroethyl)-1H-[1,2,3] triazole-4-yl)glucosamine (18F-NFTG) annotates glycogenesis in cancer cells and tumors in vivo, measured by PET. Specificity of glycogen labeling was demonstrated by isolating 18F-NFTG-associated glycogen and with stable knockdown of glycogen synthase 1, which inhibited 18F-NFTG uptake, whereas oncogene (Rab25) activation-associated glycogen synthesis led to increased uptake. We further show that the rate of glycogenesis is cell-cycle regulated, enhanced during the nonproliferative state of cancer cells. We demonstrate that glycogen levels, 18F-NFTG, but not 18F-FDG uptake, increase proportionally with cell density and G1-G0 arrest, with potential application in the assessment of activation of oncogenic pathways related to glycogenesis and the detection of posttreatment tumor quiescence. © 2013 American Association for Cancer Research.


PMID: 24590807     PMCID: PMC3966281    

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document