• Home
  •  > Scopus Publication Detail

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.


Detection of candidate tumor driver genes using a fully integrated Bayesian approach

Jichen Yang; Xinlei Wang; Minsoo Kim; Yang Xie; Guanghua Xiao

(Profiled Authors: Guanghua Xiao; Yang Xie)

Statistics in Medicine. 2014;33(10):1784-1800.

Abstract

DNA copy number alterations (CNAs), including amplifications and deletions, can result in significant changes in gene expression and are closely related to the development and progression of many diseases, especially cancer. For example, CNA-associated expression changes in certain genes (called candidate tumor driver genes) can alter the expression levels of many downstream genes through transcription regulation and cause cancer. Identification of such candidate tumor driver genes leads to discovery of novel therapeutic targets for personalized treatment of cancers. Several approaches have been developed for this purpose by using both copy number and gene expression data. In this study, we propose a Bayesian approach to identify candidate tumor driver genes, in which the copy number and gene expression data are modeled together, and the dependency between the two data types is modeled through conditional probabilities. The proposed joint modeling approach can identify CNA and differentially expressed genes simultaneously, leading to improved detection of candidate tumor driver genes and comprehensive understanding of underlying biological processes. We evaluated the proposed method in simulation studies, and then applied to a head and neck squamous cell carcinoma data set. Both simulation studies and data application show that the joint modeling approach can significantly improve the performance in identifying candidate tumor driver genes, when compared with other existing approaches. © 2013 John Wiley & Sons, Ltd.

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document