• Home
  •  > Scopus Publication Detail

Scopus Publication Detail

The publication detail shows the title, authors (with indicators showing other profiled authors), information on the publishing organization, abstract and a link to the article in Scopus. This abstract is what is used to create the fingerprint of the publication.

Three-dimensional brain MRI for DBS patients within ultra-low radiofrequency power limits

Subhendra N. Sarkar; Efstathios Papavassiliou; David B. Hackney; David C. Alsop; Ludy C. Shih; Ananth J. Madhuranthakam; Reed F. Busse; Susan La Ruche; Rafeeque A. Bhadelia

(Profiled Author: Ananth J Madhuranthakam)

Movement Disorders. 2014;29(4):546-549.


Background: For patients with deep brain stimulators (DBS), local absorbed radiofrequency (RF) power is unknown and is much higher than what the system estimates. We developed a comprehensive, high-quality brain magnetic resonance imaging (MRI) protocol for DBS patients utilizing three-dimensional (3D) magnetic resonance sequences at very low RF power. Methods: Six patients with DBS were imaged (10 sessions) using a transmit/receive head coil at 1.5 Tesla with modified 3D sequences within ultra-low specific absorption rate (SAR) limits (0.1 W/kg) using T2, fast fluid-attenuated inversion recovery (FLAIR) and T1-weighted image contrast. Tissue signal and tissue contrast from the low-SAR images were subjectively and objectively compared with routine clinical images of six age-matched controls. Results: Low-SAR images of DBS patients demonstrated tissue contrast comparable to high-SAR images and were of diagnostic quality except for slightly reduced signal. Conclusions: Although preliminary, we demonstrated diagnostic quality brain MRI with optimized, volumetric sequences in DBS patients within very conservative RF safety guidelines offering a greater safety margin. © 2014 International Parkinson and Movement Disorder Society.

PMID: 24442797    

Scientific Context

This section shows information related to the publication - computed using the fingerprint of the publication - including related publications, related experts with fingerprints representing significant amounts of overlap between their fingerprint and this publication. The red dots indicate whether those experts or terms appear within the publication, thereby showing potential and actual connections.

Related Publications

Related Topics

Appears in this Publication Appears in this Document

Related Experts

Author of this Publication Author of this Document